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Transition radiation from an anisotropic dielectric layer 
with particular reference to the biological membranet 

J. LAM 
Center for Theoretical Studies, University of Miami, Coral Gables, Florida, U.S.A. 
MS. received 14th Apri l  1969 

Abstract. This paper considers the problem of transition radiation, at oblique 
particle incidence, from a homogeneous uniaxial dielectric layer imbedded between 
two semi-infinite homogeneous isotropic dielectric media. The vector wave problem 
is transformed into two independent boundary-value problems for a pair of scalar 
potential functions. Exact expressions for the radiation field are derived. 

1. Introduction 
An area of intensive research in contemporary biophysics is the study of the structure 

and function of the biological membrane. Of particular interest is the mechanism of 
ionic transport across the membrane-a process so important to the vital functioning of 
organic matter. In  the formulation of a theory for such a process, it is desirable to have at 
hand some knowledge of the thickness and dielectric properties of the membrane. Previous 
investigations, based on capacitance and reflectivity measurements, have concluded that 
the membrane is about 50 A to 100 A thick, and that its dielectric constant is about 2.5 
times the free-space value. There are also indications that the membrane is actually 
anisotropic, the dielectric constant being slightly smaller along the normal to the membrane 
surface (Ohki 1969). 

In  this work we consider a new technique for measuring the properties of the membrane, 
which may serve to check or improve on the previous results, by probing the membrane 
with high-speed charged particles of great penetrating power. As was shown by Ginzburg 
and Frank (1946), a charged particle, crossing the interface between two different media, 
must emit a radiation, called transition radiation, which is characteristic of the electro- 
magnetic properties of the media. By observing the emitted radiation me may infer the 
properties of the media along the trajectory of the particle. Much interest in the study of 
transition radiation has recently been developed in connection with the optics of thin 
films. However, despite the fact that the volume of literature in this field is extensive 
and steadily increasing, as is evidenced by the bibliography of a review article of Bass 
and Yakovenko (1965), there does not seem to be a published calculation whose results 
are immediately applicable to the membrane problem. We therefore take up the task 
and formulate the problem as follows. 

We consider as a model of the biological membrane a homogeneous uniaxial dielectric 
sheet of thickness 2a and infinite extent, lying between the surfaces x = a a. We call 
it medium 2. Its dielectric tensor is given by 

The  half-space x < - a  is occupied by a homogeneous isotropic medium 1 of dielectric 
constant cl; the half-space z > a is occupied by a different homogeneous isotropic medium 3 
of dielectric constant E ~ .  All three media are taken to be non-magnetic, so that their 
permeabilities assume the free-space value po. A point particle of charge e is incident 
from medium 1 on the interfaces z = k a. Since the energy loss due to the emission of 
transition radiation is only a very small fraction ( <  1%) of the particle’s kinetic energy, 
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we shall assume that the velocity of the particle is constant. Without further loss of 
generality we write down the charge and current densities associated with the particle's 
motion as follows: 

p(r, t )  = eS3(r-vt) 

J(r, t )  = p ( r ,  t)v 

v = v,e,+v,e, 

where vx and a, are constants. The  aim of this paper is to calculate the transition radiation 
in medium 1. As formulated in this way, our problem is sufficiently general to include 
several previous results as special cases. 

In  9 2 the field of a point charge moving uniformly in a homogeneous uniaxial medium 
is derived. In  5 3 we introduce two scalar functions, the Bromwich potentials, to reduce 
the vector wave problem into two scalar ones. The  resulting boundary-value problems 
are solved in 4 4, and the nature of the solutions is examined in 5 5.  Throughout this 
work we use the m.k.s. system of units. 

2. The primary wave 
Maxwell's equations in a general medium have the form 

a 
at 

V. D(r ,  t )  = p(r, t), 

V .B( r ,  t )  = 0, 

V x  E(r ,  t )  = ---B(r, t) 

V x H ( r , t )  = - D ( r , t ) + J ( r , t ) .  
(2.1) a 

at 

Taking the Fourier transform in the time variable, we obtain 

v. D(r ,  U )  = p(r, U ) ,  

v . B ( r ,  W) = 0, 
V x E(r, w )  = iwB(r, W) 
vx H(r,  U )  = - iwB(r, w)+J(r ,  U) (2.2) 

where 

J ( r ,  w )  = 1" dt eiWtJ(r, t ) ,  etc. 
- m  

(2.3) 

We introduce the 'constitutive relations 

D(r ,  W) = . (U) .  E(r ,  U ) ,  B(r, w )  = poH(r ,  U )  (2.4) 
where E(W) is the dielectric tensor, which, in general, is frequency dependent. Then we 
have from (2.2) and (2.4) 

Vv. E-V2E-wW2p0e. E = iwpoJ. (2.5) 
The primary field is the particular solution of (2.5), with J given by (1.2)' which satisfies 
the radiation condition. We denote it by EO. 

We express J ( r ,  w )  in the form of a double Fourier integral: 

1 
J ( r ,  U )  = - (2.6) (2+ - m  

Then 
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where 

Defining 

y = - (U--Qz '* ) .  1 

v ,  

J(Q, ,6, z ,  w )  = eiYtJ(cz, p ,  U )  (2.9) 

(2.10) 

k = (%is ,  r) (2.11) 

(2.12) 

e 

z', 
J(Q,  p ,  U )  = --'U 

we can re-express (2.6) as 
si 1 

J ( r ,  w )  = ___ j: si 

da d,8 exp(ik . r)J(cr, /3, w ) .  
(W2 - x  

Similarly, we define 

Eo(r ,  w )  = - da d,4 exp(ik . r )Eo(a ,  ,8, w ) .  (2.13) 
(W2 

Then (2.5) reduces to 

A(k)  . Eo(a ,  /?, w )  = iwpoJ(a, 8, w ) ,  (2.14) 

Here h (k )  is a dyadic operator given by 

R(k) = - kk + k21-  w2po€ (2.15) 

with I the unit dyadic. Using the expression for E in (l.l), we write out (2.15) in the form 
of a matrix: 

k 2  - Q2 - U2poE' - QP -QY 
A(k) = ( -4  k2 - p 2  - wZpoE' -PY 1. (2.16) 

- QY - PY it2 - y2 - w2poE" 

The solution of (2.14) is then 

Eo(a ,  p,  w )  = h- l (k )  . iwpoJ(cr, f l ,  U )  (2.17) 

A - l ( k )  being the inverse of R(k). By a well-known result in matrix theory we have 

1 
det A(k) 

A-'(k) = (2.18) 

where i ( k )  is the adjugate matrix of h ( k ) .  i ( k )  is symmetric and its elements are 

All = ( k 2 - p -  w2p0")(k2-y2-- w2poE")-p2y2 

ii22 = ( k 2  - cc2 - w2po")(k2 - y2 - w2p0d') - .2y2 

AS3 = (k2 - a2 - w2po")(k2 - - w2p0d) - u2p2 

A,, = xy(k2 - w2p0") 

A,, = @(k2 - w 2 p 0 ~ " )  

A 2 3  = p Y ( ~ 2  - w2poE') I (2.19) 

Moreover, we have 
det R(k)  = - w2po(k2 - w 2 p O ~ ' ) ( ~ ' ( a 2  + p 2 )  +d'y2 - W ~ ~ ~ E ' E ' ' } .  (2.20) 
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In  the special case of an isotropic medium E’ = E ”  = E, and (2.17) reduces to 

(2.21) 

Thus we have calculated the primary field due to the motion of the charged particle. 
In  particular, for the x component we have 

1 - ie uyv, + (y2 - u 2 p 0 ~ ’ ) v 2  
dcr d/3 exp( ik . r )  - (2.22) 

W E ,  €’(a2 + / 3 2 )  +E”y2 - W2poEIEC’  
E,O(r, U )  = - 

(2vI2 
By (2.2), it follows from (2.17) that 

(2.23) -iP& Pvz BZo(r, U )  = - du d/3 exp( ik , r )  - 
v ,  k2 - u 2 p 0 ~ ”  

The integrals (2.22) and (2.23) will satisfy the radiation condition if we formally give w 
a small positive imaginary part. 

The  total field in each of the three media is a superposition of the primary field and a 
solution of the homogeneous Maxwell equations. The  latter represents the transition 
radiation, and is uniquely determined by the requirement that the total field satisfies the 
following boundary conditions at each of the interfaces : 

t o t  tot. E,, = Et- 
(2.24) 

t o t  t o t  
B‘,”: = B ~ - ,  H:: = H&- 

where n and t refer to the normal and tangential components respectively, and + and - 
refer to the two sides of the interface. 

3. The Bromwich potentials 
In  a source-free region of space we can separate an electromagnetic wave into a trans- 

verse electric and a transverse magnetic component relative to the z direction. This 
decomposition is accomplished with the help of two scalar potentials U and V,  which are 
generalizations of the ones used by Bromwich (1919) for an isotropic medium. We shall 
refer to them as the Bromwich potentials. 

Consider first the transverse electric wave. We introduce a scalar function U(r ,  w )  
such that 

E = i o v  x (Ue,). (3.1) 
By construction E is transverse to the z direction. Then 

D = E .  E = iwE‘T7x (Ue , )  
and 

1 
B = v x  E = v x  Vx(Ue,). 

1w 

D and B are clearly divergenceless. The  remaining Maxwell equation 

implies that 
(3.5) 

Since the curl of a gradient vanishes identically, (3.5) is satisfied if U is a solution of the 
scalar wave equation 

(V”w2pos’)U = 0. (3 4 
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Hence a scalar wave function satisfying (3.6) generates a transverse electric wave given by 
(3.1) and (3.3). Writing these out in component form, we have 

a2u au 
ay axax 

B, = - 

aU 8 2 0 -  
B,  = - 

ax 

E ,  = io-, 

E ,  = -iw-, 

E, = 0, B, = --(;+$)U 

(3 *7)  ) 
= (G+w2po€’ a 2  U .  

We see that U can be determined from B,. 

V( r ,  U )  such that 
Similarly we generate a transverse magnetic wave by introducing a scalar function 

B = - iwpoe‘V x (Ve,). (3 4 
By construction B is transverse to the x direction. Then 

1 
D = -  - V x B  

1WPO 

and both B and D are clearly divergenceless. Also 

E = D = E ‘ E - ~ .  0 x V x (Ve,) 

where is the inverse of E:  

(3.9) 

(3.10) 

(3.11) 

T o  satisfy the remaining Maxwell equation 
T x E  = iwB (3.12) 

we have 
v x { E ’ E - ~ .  VV, (Ve,)-E’E-l. e ,~2V-~W2poE’Ve, )  = 0. (3.13) 

Since 

(3.14) 

92.13) becomes 

(3.15) 
av En-€‘ P V  E ’  

e,- ,. D 2Ve,- 02podVe, 

This equation is satisfied if V is a solution of the scalar wave equation: 

(3.16) 
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Writing out (3.8) and (3.10) in component form, we have 

av 
B,  = -iwpOd- aY 

f3V 
B, = iwpOE’- 

ax (3.17) 

We see that V can be determined from E,. 
The total field is the sum of these two components: 

Etot = i w D ~ ( U ~ ~ ~ e , ) + E ~ e - ~ .  V x V x ( V t o t e , )  
Btot = V x v x ( Vote,) - iwpoe’v x ( Vote,). 

(3.18) 

Moreover, both Utot and Vtot can be expressed as the sum of two parts contributed from 
the primary and the secondary waves : 

(3.19) 

Since Eo and Bo satisfy the homogeneous Maxwell equations outside the source, we can 
determine U o  and V o  from B,O and E,O respectively in this region. By (2.22) and (2.23) 
we obtain 

1 
(3 2 0 )  1 hoe Pvx da d,i3 exp( ik . r )  - 

V ,  k2  - w ~ ~ O E ‘  y2 - w ~ ~ O E ‘  
UO(r, w )  = - 

(2Tl2 
and 

ie aya,+(y2 - w 2 p 0 ~ ’ ) u z  
YO(r, U )  = - da dp exp( ik . r )  - 

WZ’, d ( 1 2  + p 2 )  + E ” p  - w2poEfE’’ 

1 
X 

y2 - w2p0.’’ 
(3.21) 

We note that U o  vanishes in the case of normal incidence (U, = 0). 
The  Bromwich potentials U and V of the secondary wave are solutions of the homo- 

geneous scalar wave equations (3.6) and (3.16), respectively. We represent them in the 
form of double Fourier integrals by analogy with (3.20) and (3.21): 

1 n m  nx 

and 

V ( r ,  U )  = - ST, Sa dadPexp(i(ax+pY+qZ)}v(~,S, U ) ‘  (3.23) 

Substituting (3.22) and (3.23) into (3.6) and (3.16), we obtain the following dispersion 
relations for the determination of p and q :  

t2TY - m  

and 
y-2 + p 2  +p2 - W2poEf = 0 (3 -24) 

E ’  
- ( 1 2 + p 2 ) + q 2 - W 2 p o E ’  = 0. (3.25) 
€If 



Transition radiation from an anisotropic layer 535 

These two equations are recognized to be the dispersion relations for the ordinary and the 
extraordinary waves, respectively, in a uniaxial crystal. For an isotropic medium they 
degenerate into one, and p and q are the same. 

The  amplitude functions U(u, p, w )  and V(a, p, w )  of the secondary wave are deter- 
mined by the boundary conditions. Translated in terms of the Bromwich potentials, the 
conditions (2.24) imply the continuity of the quantities 

. 
u t o t  - a UtOt E l p o t  -. a p o t  

> 
az az 

across the interfaces z = I a, as can be easily seen from (3.7) and (3.17). 

4. The secondary wave 

potentials for each of the three media. We let 
Before applying the boundary conditions we first write down the total Bromwich 

U(r ,  U )  = - 

V(r ,  w )  = - 

j- dudSexp(i(ax+Ily)~~(:(cr,S,z, w )  

(4.1) 
(W2 - m  

d:(cr dP exp(i(crx+iSy)}V(a, p,  z ,  0). 
(242  sI,s:, 

Then 
Upt(a ,  p,  z ,  w )  = eiyzUjo(a, B, w )  + Ut(&, p,  z ,  U )  

Vpt(a, p,  z ,  w )  = eiyzVio(a, /3, w )  + Vt(ct, 8, z ,  U ) .  
(4.2) 

Here the subscript i refers to the different media. Uio(a, 8, w )  and Vio(cr, 8, w )  are ob- 
tained from (3.20) and (3.21): 

(4.3) 
\ I  

ie oryv, + (y2 - 1 
w'u, E I ( M . 2  + p 2 )  + Eny2 - W2"E'E'' y2 - w2poE'' 

vio(a, p,  w )  = - 

From (3.24) and (3.25) we let 

(4.4) 
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Imposing the boundary conditions, we obtain two sets of simultaneous linear equations : 

exp( - iya) Ulo + exp( ip,a)A, = exp( - iya)Uzo + exp(ip,a)A, + exp( - ip2a)B, 

iy exp( - iya) Ulo - ipl exp( ip,a)A, = iy exp( - iya) U,O - ip, exp( ip,a)A, 

+ ip2 exp( - ip,a)B, (4.71 
exp( iya) U30 + exp( ip3a)B3 = exp( iya) Lizo + exp( - ip,a)A, + exp( ip,a)B, 

iy exp(iya) U30 + ip3 exp(ip,a)B3 = iy exp( iya) U20 - ip, exp( - ip,a)A, 

+ iP2 exp(ip24B2 
and 

E, exp( - iya)Vlo +E, exp(iq,a)F , = E’ exp( - iya) V20 + E ’  exp(iq,a)F, +E‘ exp( - ip,a)G2 

iy exp( - iya) V10 - iq, exp( iqla)F, = iy exp( - iya) V,O - iq, exp( iq2a)F2 

+ iq, exp( - iq,a)G, (4.8) 
E, exp(iya)V,* +e3 exp(iq3a)G3 = E’ exp(iya)V,O +E’ exp( - iq2a)F2 +E‘  exp(iq,a)G, 

iy exp( iya)V30 + ip, exp( ip,a)G, = iy exp( iya) V20 - iq2 exp( - iq2a)F, 

+ iq, exp(iq2a)G2. 

We are mainly interested in the secondary wave in medium 1. Therefore we solve for the 
amplitudes A, and F,. Our task consists in evaluating four 4 x 4 determinants. However, 
all of them are special cases of the following one: 

P E‘ exp( iq,a) E’  exp( - iq,a) 0 
Q - ip, exp( $,a) iq, exp( - $,a) 0 
R e’ exp( - iq,a) e’ exp(ip,a) - E 3  exp(ip3a) 
S - iq, exp( - iq,a) iq, exp( ip,a) - iq, exp( iq,a) 
= - 2 exp( iq3a)[q2P{e’p3 cos(2q2a) - i~3q2 sin(2q2a)} 

+ i~’Q(~342 cos(2q2a) - ie’q, sin(2q2a)}+ i~’q2(iq3R -e3S)]. 

We can now express the solutions in the following form: 

where 

(4.9) 

(4.10) 
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5 .  The asymptotic field 
We have obtained the solution of the problem in the form of double Fourier integrals: 

An exact evaluation of the integrals is very difficult. However, for our purpose it is only 
necessary to derive the asymptotic form in the limit of large values of x, y and x. Firstly, 
it is convenient to introduce polar coordinates: 

x = r sin 0 cos 4 

Z’ = - ( X + a )  = rcos8.  

This  represents a left-handed coordinate system with the origin at (0, 0, -a )  and the 
polar axis along the negative x axis. Furthermore, in medium 1 we have 

y = r sin e sin 4 ( 5  -2) 

Then it can be shown that for large Y we have the asymptotic relation (Born and Wolf 
1959) 

dcc dPf(x, ,8) exp[i{xx+/3y+(k12-x2-/32)1/2z‘}] J -,J - - C O  

exp( ik, r )  
= - 27ikl cos 8 f ( k ,  sin 0 cos 4, k, sin 8 sin 4) 

r 

wheref(a, /3) is a slowly varying function. Applying (5.4) to ( S a l ) ,  we obtain the asymptotic 
form of the Bromwich potentials: 

- 1  

27 
- i  
27 

K(kl sin 8 cos 4 ,  k, sin 8 sin 4, w )  exp(ik,r) 
D(k, sin 0 cos 4, k, sin 0 sin 4, U )  

N’(k ,  sin 0 cos 4, k, sin 0 sin 4, w )  exp(ik,r) 
D’(k,  sin 0 cos 4, k, sin 0 sin 4, w )  

up, = -k, cos e 

V ( r ,  = - A ,  COS e 

r 
( 5 . 5 )  

r 

These represent a spherical wave diverging from the neighbourhood of the origin. 
Actually, the asymptotic expressions (5 .5)  are valid only when the particle velocity is 

below the threshold of the generation of Cerenkov radiation. The  reason is that the 
derivation of (5 .4)  is based on the method of steepest descent. At some stage of the cal- 
culation we have to deform the contour of integration into a path of steepest descent 
through a saddle point. In  this deformation process the contour may sweep over poles 
of f ( x ,  13) whose locations vary with the velocity of the incident particle. These poles 
yield additional contributions to (5 .5 ) .  It can be shown that the condition for the inclusion 
of the contributions from these poles is precisely the same as that for the emission of 
Cerenkov radiation, namely the surpassing of the phase velocity of light in the media by 
the particle velocity. Thus the contributions from these poles represent Cerenkov radia- 
tion. However, the appearance of Cerenkov radiation in a transition radiation measure- 
ment is undesirable, since it complicates the situation. We should naturally try to keep 
the particle velocity below the threshold. Therefore we shall not go into a discussion of 
Cerenkov radiation. The  reader who is interested in this aspect of the calculation is 
referred to the literature (Garibian 19.58). 
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The radiation field is obtained by substituting (5.5) into (3.18): 

(5.6) 

N' 
D 

Ai' } expjik,r) 
D 

i 
2T 

E ( r ,  w )  = -k12 cos 8 

B ( r ,  w )  = - k12 cos 8 

n x e,  +k, 

n x (n  x e,) - w p 0 q  

n x (n  x e,) 

1 
n x e ,  

2iT 

Here n is a unit vector along the direction of observation. In  our left-handed coordinate 
system it is given by 

n = (sin 8 cos 4,  sin 8 sin 4, cos 0). ( 5 . 7 )  

We note that there is no need to include the primary field in (5.6) since, at a velocity below 
the threshold for the emission of Cerenkov radiation, the frequency component of the 
field of a uniformly moving charged particle falls off exponentially away from the source, 
and does not contribute to the radiation field. 

The radiation field is polarized along two directions. From (5.6) we see that the trans- 
verse electric component is polarized along n x e, and the transverse magnetic component 
along n x (n x e,). These two directions are orthogonal. Moreover, they lie in a plane 
orthogonal to the direction of observation n. This polarization property is of great im- 
portance in the detection of transition radiation. It helps us to distinguish transition 
radiation from radiations of other origins. 

From the radiation field (5 .6)  we can construct the Poynting vector n(r, 0): 

112 

n( r ,  w )  = E( r ,  U )  x H ( r ,  w )  * - - (2) IE(r, w)12n 

such that the total energy radiated per unit solid angle along a given direction from 
t = - CO to t = CO is given by 

d W  r2 
- =-1 dwII(r,w), Y +- CO. 
dS1 2v - m  

Thus at a given frequency w the angular distribution of the radiation is given by 

The  angular distributions 
taken individually, are 

d2W r2 
dS1dw 2v 
-- - - II(r ,  U ) .  

of the transverse electric and the transverse magnetic 

1/2 N 2 d2WTE 1 
dS1ddw ( 2 ~ ) ~  

dQ dw ( 2 ~ ) ~  (K) 151 

-. - - -- kl4w2 (") Inj sin2 8 cos2 8 

d2WTM 1 1/2 N' 2 

sin2 8  COS^ 8. -=- 

(5.9) 

(5.10) 

waves, 

(5.11) 

Since the directions of polarization of the two waves are mutually perpendicular, the 
total radiation pattern is just the superposition of these two expressions. 

In  general, the energy radiated is proportional to the squares of the charge and the 
velocity of the particle. For particle velocities not too close to that of light the radiation 
pattern is relatively velocity independent. Moreover, since it depends only on a few para- 
meters, namely the dielectric constants and the thickness 2a, these can be determined by 
performing measurements on the radiation pattern. The  experimental aspects of transition 
radiation are discussed at length in a review article of Frank (1966). 
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